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NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION 
BY THE METHOD OF SIEVES 

Brown University and Academia Sinica, Taiwan 

Maximum likelihood estimation often fails when the parameter takes 
values in an infinite dimensional space. For example, the maximum likelihood 
method cannot be applied to the completely nonparametric estimation of a 
density function from an iid sample; the maximum of the likelihood is not 
attained by any density. In this example, as in many other examples, the 
parameter space (positive functions with area one) is too big. But the like-
lihood method can often be salvaged if we first maximize over a constrained 
subspace of the parameter space and then relax the constraint as the sample 
size grows. This is Grenander's "method of sieves." Application of the method 
sometimes leads to new estimators for familiar problems, or to a new moti-
vation for an already well-studied technique. We will establish some general 
consistency results for the method, and then we will focus on three applica-
tions. 

1. Introduction. Techniques for estimating finite dimensional parameters typically 
fail when applied to infinite dimensional problems. The difficulties encountered in moving 
from finite to infinite dimensions are well illustrated by the failure of maximum likelihood 
in nonparametric density estimation. Let xl, . ,xn be an iid sample from an absolutely 
continuous distribution with unknown probability density function (pdf) ~ o ( x ) .The 
maximum likelihood estimator for a0 maximizes 

over some specified set of candidates. But if this set is too large, then the method will fail 
to produce a meaningful estimator. For instance, in the extreme case nothing is known 
about ao, and the maximum of (1.1)is not achieved. Roughly speaking, we move out of the 
parameter space (the space of all densities) toward a discrete distribution with jumps at  
the sample points. 

Another example of the failure of classical methods to solve infinite dimensional 
problems is the breakdown of least squares in the nonparametric estimation of a regression. 
Let X and Y be random variables and let (xl,yl), ., (x,, y,) be an iid sample from the 
bivariate distribution of (X, Y). The least squares estimator of the regression function 
E ( Y  ( X= x )  minimizes 

Observe that the minimum is zero and is achieved by any function which passes through 
all of the points of observation, (XI,yl), .. a ,  (x,, y,). Excepting some very special cases, 
this set does not in any meaningful sense converge to the true regression. 

Grenander (1981) suggests the following remedy: perform the optimization (maximiza-
tion of the likelihood, minimization of the sum of square errors, etc.) within a subset of the 
parameter space, and then allow this subset to "grow" with the sample size. He calls this 
sequence of subsets from which the estimator is drawn a "sieve," and the resulting 
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estimation procedure is his "method of sieves." The method leads easily to consistent 
nonparametric estimators in even the most general settings, with different sieves giving 
rise to different estimators. Often the sieve estimator is closely related to an already well- 
studied estimator, and may suggest an improvement, or a new point of view and a new 
motivation. Numerous examples of sieve estimators are presented in Grenander (1981). A 
few examples here will make much more clear the technical sections which follow. 

The histogram is a simple example of a sieve estimator. Consider again the problem of 
estimating an entirely unknown density function ao(x). We have seen that unmodified 
maximum likelihood is not consistent for this problem. A sieve is a sequence of subsets of 
the parameter space, such as: 

a :is a pdf which is constant on [ k ; 1 , f ) , k = 0 , k 1 , k 2- ,...-

rn = 1,2, . . . .The method of sieves estimator maximizes the likelihood, nT=lcu(xi), subject 
to a E Sm,allowing m to grow with the sample size. The well-known solution is the function 

k k - 1  k 
- for x s  [?;),

n m 

i.e. the historgram with bin width m-'. Putting aside details, we know that if m, .T co 
sufficiently slowly, then 6 is consistent, e.g. in the sense that J ( 6(x)  - a 0  (x) 1 dx +0 a.s. 

For the same problem, a different and more interesting sieve is the "convolution sieve": 

This time, maximizing the likelihood within S, gives rise to an estimator closely related 
(but not identical) to the Parzen-Rosenblatt (Gaussian) kernel estimator. In fact, the latter 
is in the sieve S,: take F to be the empirical distribution function. But the maximum of 
the likelihood is achieved by using a different distribution. As with the Parzen-Rosenblatt 
estimator, if m, .T co sufficiently slowly (i.e, the "window width" is decreased sufficiently 
slowly) then the estimator is consistent. A more precise discussion of this and some related 
sieves is in Section 6. 

The inconsistency of least squares nonparametric regression can be similarly rectified 
by introducing sieves. Let us look again a t  the regression problem formulated above; recall 
that (xl, yl ), .. . , (x,, y,) is an iid sample from the bivariate distribution of (X, Y). Given 
a sieve S,, the method of sieves estimator 6 minimizes the sum of square errors, (1.2), 
subject to 6 E S,. If, as an example, 

a :a absolutely continuous, J 

then 6 is uniquely determined; it is a first degree polynomial smoothing spline; i.e. 6 is 
continuous and piecewise linear with discontinuities in (dldx) 6 a t  XI, . . ., x,; see 
Schoenberg (1964). It is possible to show that if m, increases sufficiently slowly, then the 
estimator is strongly consistent for E ( Y( X= x )  in a suitable metric; details are in Geman 
(1981). Other sieves applied to the same problem lead to kernel estimators and still others 
to new estimators. Even if the squared loss function { y - a (x)) is replaced by a "robust" 
alternative, minimization over too large a set will again fail to produce a meaningful 
estimator. In exactly the same way, sieves offer a remedy in this case as well. 

Because this same method produces a variety of estimators, certain properties (existence 
and consistency, a t  the least) can be given a unified rather than case-by-case treatment. 
This paper is a first step toward such an approach. So that the paper will have sufficient 
focus, our theorems are about maximum likelihood estimation only. It will be obvious that 
much of the discussion also applies to least squares regression, or to other estimators 
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similarly derived from optimization problems. Following a section devoted to notation and 
definitions, Section 3 contains the main results. These are two theorems declaring the 
existence and consistency of maximum likelihood sieve estimators under the condition that 
the sieve grow sufficiently slowly with the sample size. Then, in Sections 4, 5, and 6 we 
apply these general results to some specific examples. The examples were chosen for 
illustration; they represent simple applications of the results in Section 3. We believe that 
some of these estimators, particularly in Section 6, have good practical potential, but this 
was not a consideration in their selection. 

There are numerous well-studied techniques, in both numerical analysis and statistics, 
that are closely related to the method of sieves. So as to put the method in better 
perspective, let us list some (but far from all) of these related approaches. The finite 
element and the Rayleigh-Ritz-Galerkin approximations, most commonly applied to the 
solutions of partial differential equations, are close analogues in the deterministic setting; 
see, for example, Strang and Fix (1973). For density esthation with the maximum 
likelihood criterion, the method of penalized maximum likelihood (Good and Gaskins, 
1971; Tapia and Thompson, 1978) is a sort of "dual" of the method of sieves. This is 
because the problem of choosing a from a suitable class of densities ( J / )  to maximize 

(1.3) C?=llog a(xi) + X@(a) 

for some penalty function @ is the Lagrange multiplier version of the following constrained 
optimization problem: maximize a(xi) subject to a E J /  and @(a)5 m. And, the 
solution to this is the method of sieves estimator when employing the sieve 

S, = {a E +:@(a)5 m). 

For the regression problem, a similar relation exists between the least squares polynomial 
smoothing splines and certain sieve estimators. Fixp = 1,2, . ,and let +be the collection 
of functions having p - 1absolutely continuous derivatives. The sieve 

applied to the criterion (1.2) gives rise to a 2p - 1 degree polynomial smoothing spline. 
The latter, widely studied as an estimator for nonparametric regressions (see Craven and 
Wahba, 1979, and references therein), is usually arrived at by solving a least squares 
analogue to problem (1.3):minimize 

over J/. Finally, we should also mention the truncated orthogonal series estimators, 
especially as treated by Kronmal and Tarter (1968) and Tarter and Kronmal (1970),and 
the "maximum likelihood admissible" estimator introduced by Wegrnan (1975). If the 
coefficients in an orthogonal series estimator are chosen by optimizing some criterion, then 
the estimator has an obvious interpretation as an example of the method of sieves. And, if 
we are willing to relax the definition of a sieve so that it may depend on the random 
sample, then Wegman's estimator also permits this interpretation. 

2. Definitions and notation. We will assume that the parameter space, A, is a 
metric space, with metric d. ao will refer to the "true" (and unknown) parameter. The 
value space is a measure space, (X, 4 dx), with a-finite measure dx. On (X, a ) ,  we have 
a family of probability measures, {P, :a E A), with the properties that P, + Paif a + ,8, 
and that P, is absolutely continuous w.r.t. dx and (d~ , /dx) (x)= f(x, a) .  

A sieve for the parameter space A is a sequence {S,) of subsets of A. (Usually S, is 
compact, S, c and U S, is dense in A,) We will use the following notations and 
definitions 
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(a)  For a E S,, B ,  (a,  E )  = {p:/3 E Sm and d (a,  p )  < E ) .  
(b )  E,g(x)  = J g ( x )  dP, = J g ( x ) f ( x ,  a )  dx. The  "formal entropy" is H ( a ,  P )  = 
E, In f (x ,p ) .  H ( a ,  a )  -H(a ,P )  is the familiar Kullback-Leibler information. 
( c )  For any extended real-valued function g on A ,  and any B C A ,  g ( B )  = suppe&(P). 
( d )  P will denote the infinite produce measure, P,, x P,, x . . . , on ( O , 8 ) ,  where 52 = Xm 
and F= completion of  LBmw.r.t. P. Unless otherwise specified, "almost sure" will be 
understood to mean w.r.t. P. w will denote the typical point in O: (L, = ( X I ,  xz, . . . ). 
( e )  For each n ,  the likelihood function based on ( X I ,  . . . , x,) is Ln (w, a )  = nI=1f (xi, a ) .  
( f )  The  set o f  allmaximum likelihood estimators in S,, given a sample of  size n ,  is defined 
by 

Mk(w)  = { a  E S,: L,(w, a )  = Ln(w, S,)). 

The  maximum entropy set in S ,  is 

A, = { a : aE S ,  and H(ao, a )  = H ( @ ,  Sm)). 

( g )  For C, C A ,  C, + a means suppE~,,d (a,P )  + 0. 

3. General results. Let us first settle the question o f  the existence of  a sequence m, 
for which the maximum likelihood set, M k n ,  is consistent. Shortly thereafter, we will 
discuss the more important question of  identifying such a sequence. 

THEOREM1. Assume that a sieve, {S,), is chosen such that: 
B1. For every m,  every a E S,, and every E > 0, f (x ,  B,  (a,  E ) )  is measurable in x; for every 
m and almost every x ( d x ) ,  lim,,of(x, B ,  (a,  E ) )  = f (x ,  a )  for all a E S,, i.e. f (x ,  a )  is 
upper-semicontinuous in a on S,. 
B2. For every m and every a E S,, there exists E > 0 such that 

B3. S, is compact for each m. 

B4. A, + an as m + m. 

Then, for every n ,  m,  and almost every w, M X w )  is nonempty, and for every sequence mn 

increasing slowly enough, M", +an as .  


REMARK1. B4 is usually easy to verify: Quite often H(ao, a,) + H(a0, ( Y O )  implies 
a, + an. (Implicit is the assumption that i f  H(ao, an) = +m, then H(ao, a )  < +m for all 
a # an, and that H(an,  an) > -m.) I f ,  in addition, {S,) is chosen so that there exists 
a, E S, with H(ao,  a,) 4 H(an,  an),  then A ,  + an. (Roughly speaking, the condition 
guarantees that the sieve is sufficiently dense in the parameter space.) 

REMARK2. The  set M k  may be replaced by { a  :a ES,, L, (w, a )  r qLn (a ,  S,)) where 
q is any fixed constant, with 0 < q 5 1. Theorem 1 still holds (i.e, if a is chosen so that 
Ln(w, a )  is always greater than a fixed proportion of  the maximum, then a will converge 
to an).  Theorem 2, below, can be similarly reformulated. 

A proof o f  Theorem 1 can be obtained by a straightforward adaptation of  the techniques 
of  Wald (1949), Bahadur (1967), and others. Since the theorem is not used in what follows, 
we omit the details. 

In Theorem 1, "slowly enough" may depend on an. The  method has no application ifwe 
cannot identify a "universal" sequence mn which guarantees consistency whatever the 
target parameter. Theorem 2 enables us to identify such a sequence. Its application will be 
illustrated by three examples, to be presented in Sections 4, 5, and 6. 

The  conditions for Theorem 2 will include the following. 
CONDITIONC1. For every m and every n ,  M",s almost surely ( d P )  nonempty. 
CONDITION (a)I f ,  for some sequence a, E S,, +H(ao, an), then a, +C2. H(ao, a,) 

an. (b )  There exists a sequence a, E S ,  such that H (an, a,) +H ( ~ o ,( Y O ) .  
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For each 8 >0 and each m, define 

Dm= {a E S,: H((Yo,a )  IH((Yo,a m )  - 8)  

where a, is the sequence in C2(b). Given /sets 01, . Ot in S, such that f (., h)is 
measurable for each k, define 

THEOREM2. Assume {S,) is chosen so that conditions C1 and C2 are in force, and 
let {m,) be a sequence diverging to 03. Suppose that for each 6 > 0 we can find OT-, . 
Oz,in S,, m = 1,2, ,such that 

(ii) f ( , Or) is measurable 

Then Mk, + a0 as .  

REMARK1. The condition on m, depends on ao. The theorem is applied by demon-
strating that once given m,, the condition holds for arbitrary a0 € A. An exampleis worked 
through in detail in Section 4. 

REMARK2. We expect p, < 1 since, at least if Oh is small and if there is some a E Oh 
nDm,then the function 

satisfies d, (0) = 1, and 

Notice that smaller sets 01,...,Ofmwill in general lead to smaller p,, but larger 6. 

REMARK3. The theorem can be reformulated so as to replace the exponential bound, 
p,, by a more general moment bound. But in all of our examples, the functions f(x, a) ,  
a E S,, are "sufficiently regular" to permit application of Theorem 2 in its present form. 
When an exponential bound is possible, it should be used; the weaker moment bounds lead 
to severely restricted rates of growth for m,. 

REMARK4. A metric must first be chosen for the parameter space A. Consistency is 
then in the sense of this metric. Often (as in the examples of the next two sections) C2(a) 
suggests the "natural" metric for a problem. 

REMARK5. When A is separable, we can take S, to be finite (say, the first m points 
of a countable dense subset). But this will typically necessitate an awkward procedure for 
calculating the maximum likelihood solution (especiallywhen m is large), whereas a more 
carefully chosen sieve will often define an easily computed estimator. 

PROOFOF THEOREM2. Fix 8 >0. We want to show that 

For, if (3.1)holds, then with probability one 

inf,E~s,,H(ao,a )  2 H(ao, cum,) - 8 
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for all n sufficiently large. Since 6 is arbitrary, and since H(ao, am) +H(a0, ao) by condition 
C2(b), 

lim inf,,,in$E~;,,,H(ao, a )  2 H(w, w) as .  

Then, combining with the well-known inequality H(a0, a )  5 H(a0, ao), 

Fix E > 0, and for each n choose p, EM z ,  such that 

Condition C2(a), combined with (3.2), implies that d(a0, Pn)+0 a.s. Hence 

Since E is arbitrary, Mk, + a0 ass., and so it is enough to prove (3.1). 

For now, fix m and n. Then 


We will now bound the probability, call it a, of this latter set. 

for any nonnegative t l ,  . . . t k .  Since t l ,  . . ., t k  are arbitrary, a 5 &(pm)", and then (3.1) 
follows from the Borel-Cantelli lemma. 0 

Quite obviously, the theorem does not provide a simple recipe for computing m,. Most 
of the work is left to the application of rather complicated conditions to specific examples. 
But the approach is versatile, and can be applied without essential change to most infinite 
dimensional estimation problems. 

A comment should be made concerning the connection with maximum likelihood 
estimation in conventional parameter spaces. Suppose that A is a finite dimensional 
Euclidean space, and that the target parameter, (YO, is contained in Smfor all m sufficiently 
large. Suppose also that Theorem 1applies. Following some well known arguments (e.g., 
Cram&, 1966, Chapter 33), we can conclude, under typical local regularity assumptions, 
that the maximum likelihood set, M&, will eventually contain only one element, an*. 
Furthermore, & (a: - ao) is asymptotically normal with optimal covariance matrix. 

4. Estimation of a regression function. Our first example is about nonparametric 
estimation of a regression function. Stone (1977) has presented a non-likelihood-based 
solution to this problem in a more general setting. The sieve method, too, extends to the 
completely general formulation, when likelihood is replaced by squared emor (see Geman, 
1981). But to illustrate Theorem 2, we will stick with maximum likelihood estimation and 
accept some otherwise unnecessary assumptions. 

Our model here is 
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with the assumptions: 

Al.  x and Mare independent random variables. 
A2. F,  the distribution of x, concentrates on [0, 11. 
A3. M - N(0, a'), a2  possibly unknown. 
A4. $; exp {t I ao(x)l)F(dx)< w, for some t > 0. 

A4, which is for the exponential bound required by Theorem 2, can be relaxed to a moment 
condition (see Remark 3 following Theorem 2), but this necessitates a far more restrictive 
bound on the growth of m,. 

The parameter space is 

A = {a(x)xE [0, 1]:Eetl"'"'1< w for some t > 0). 

It is of no consequence that A depends on F ,  which may not be known. The observations 
are of iid random variables (x,, y,), (x,, y,), . . . in the value space [0, 11x R, these variables 
being generated by (4.1) from iid random variables (xl, &), (x2,A),. . . . If we assign the 
measure F x X (A = Lebesgue measure) to [0, 11 x R, then for any a E A 

Maximizing likelihood amounts to choosing a E A to minimize C?=I {yi - Sincea ( ~ i ) ) ~ .  
any function which passes through each of the observations (XI, yl), . . . , (x,, y,) achieves 
the minimum (zero), the maximum likelihood set is not consistent. Let us introduce a 
sieve. 

A simple sieve for this problem, good for the purpose of illustratiilg the method, is a set 
of trigonometric polynomials with bounded coefficients: 

S, = {Cbo a k  cos knx:CCo I ak 1 5 K In m) 

for some constant K. a EMh if and only if a E Smand 

(An alternative sieve, 

SI, = {a :a absolutely continuous, I,'( d(x)I2 dx % m), 

leads us to the polynomial smoothing spline of degree one (cf. Schoenberg, 1964), and can 
be treated by the same techniques. In fact the conclusion of the theorem below, a strong 
consistency result, holds with Smreplaced by SI, and m, = O(n''4-');see Geman (1981). 
The estimator derived from Smis perhaps less attractive, certainly from a computational 
viewpoint, but it offers a more elementary illustration of Theorem 2.) 

Let us look at the conditions for Theorem 2. 
C1: For fixed x and y, f(x, y, a )  can be viewed as a continuous function on a compact 
subset of Rm+': 

{(ao, . . .,a,): I a k  1 5 K l n  m). 

It follows that for fixed (x,, y,), . . . ,(x,, y,) the same can be said for L,(o, a), and therefore 

Mh is nonempty. 

C2(a): Examination of the condition leads to the "natural" metric for A: 
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where LZ = LZ([O, 11, B, F ) .  Taking d(a ,  P) = 11 a -P)IL,, C2(a) is trivially satisfied. 
C2(b): Clearly in force, because U",I S, is dense in Lz, and d is the LZ norm. 

In the sense of this metric, an  application of Theorem 2 establishes consistency of the 
maximum likelihood set as follows. 

THEOREM3. If m, + m in such a  way that m, = 0(nl-') for some E > 0, then 

PROOF.We have already checked C1 and C2. In the calculations below (and in the 
following sections as well), "c" will refer ambiguously to many different constants. 

Fix 8 > 0. We will first define suitable sets Lo?, ..., 0;  covering Dm. Consider the set 
of functions a ESmof the form 

where for each k 

for some p = 0, 1, . . . . Since 1 ak I 5 K In m, there are no more than 

such a. Associate with each such a the set of all functions P E Smsatisfying 

2 
sup,(a(x) -/3(x)I 5;. 

Call the resulting collection of sets &?, . . ., &z,where by (4.3), em5 (crn)'". Notice that 
for any P E Sm,P = bk cos knx, we can find ah, 0 5 k 5 m, of the form in (4.2), such 
that 1 ak - bk 1 5 m-z for each k. If a = Ego ak cos knx, then 

sup, 1 a(x) - /3 (x) I 5CEO1 ak - bk I 5-2 . 
m 

Hence &T-, . . ., 6; covers s,. Now define Lo?, . . ., 0; by 

and observe that these cover Dm. 
Fix k and fix a E O r .  Then 

For any y E S,, sup, 1 y(x) 1 5K In m, and for a and p both in O r ,  supx I a(x) - 1 5 
4/m. Hence 

Using this and the definition of Dm, we have 

c l n m  c l n m  
(4.4) 	 5 H ( a o , a )  - H ( a o , a m )  +-5--8 

f (x, Y, am) rn m 

fora l lk  = 1,2,  ..., C a n d a l l m .  
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Again fix k ,  and define 

Then $(O) = 1,and by (4.4) 6' (0) 5 m-'c In m - 8. By similar computations (and here is 
where A4 comes in) it is possible to show that $"(t) 5 c(ln m)' provided t 5 l / ( ln  m)'. But 
then 

$'(t) 5 -c In m - 8 + c(ln m)'t, 
m 

which implies 

Hence if t = l/(ln m)P, and if p, q and m are sufficiently large, then 

6 
$(t) 5 1--

(In m)q  ' 

At least for large m then, 

And, finally, 

which is finite if m, = O(nl-9. 

5. Estimation of the mean function of a Gaussian process. The following 
example is discussed in Grenander (1981, Chapter 8), where consistency in the sense of our 
Theorem 1is proven. Here we will identify explicitly a sequence m, which guarantees this 
consistency. 

Suppose that we make repeated and independent observations of the process 

where ao E  L2 [- 1/2,1/2] is unknown and w is the Wiener process with unit variance per 
unit time. For simplicity, let us assume that a. is real and even. The parameter space is 

a : a  isevenand a ~ L 2[-:,@I. 
Define, for k # 0, 

0 
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where a ;  = k th  Fourier coefficient for ao; for k = to define ao, 0, use "1" in place of  "a' 
wO, and xo. Observe that the wk's are iid N(0,  1) random variables. The  Radon-Nikodym 
derivative, w.r.t. the measure with a = 0, is 

Since ( C?, akxk I < as., P, is equivalent to PO. Using PO as "dx", we define 

f ( x ,  a )  = exp C?, akxk -- a;( : )
I t  is easily seen that the maximum likelihood solution does not exist in A. Hence, we 

introduce a sieve. 
W e  shall use the notation C kPck with the understanding that summation is over -w to 

+w, and at k = 0, kPck means co. Let 

Sm = ( a : aE A and C k2a%5 m } .  

I t  is not hard to see that Sm is compact, S ,  C Sm+l and U,S, is dense in A. In Sm,  the 
maximum likelihood solution given n iid samples x I ( .  ), . . . ,xn(.) is 

where 

An application o f  Theorem 2 leads to the following. 

THEOREM If m ,  +w in such a way that m, 0 (n'13-') for some E > 0, then 4. = 

aO( t )1' 

The  proof is by an argument entirely analogous to the one presented for Theorem 3 in 
the previous section. T o  avoid unnecessary repetition, we will mention just a few of  the 
details. W e  have already demonstrated the unique maximum likelihood solution(&;), and 
hence condition C1 is satisfied. When  we write out condition C2(a) we arrive at the metric 
d (a ,  p )  = I(a - p ( I L , ,  much as we did in Section 4 (this time using Lebesgue measure to 
define L2).  For C2(b) we observe that UgZ1Sm is again dense in A. 

Now, for each 8 > 0 we must define sets 07, . . ., O z ,  suitably small, which cover Dm. 
~ b s e r v e t h a t i f a € ~ ~ t h e n ( a k ) S & / ( k )f o r a l l k # o , a n d ) a O ) ~ & .  ForeachkZO,  
divide [ - m / (  k 1 ,  m / )  k I ] into [ m 2 / )  k 1 + 11 intervals o f  equal length, where [x]  is the 
greatest integer less than or equal to x, and let Ik denote the set o f  all endpoints o f  these 
intervals. Similarly, let 10denote the endpoints o f  the intervals obtained by dividing 
[-A,&]into [ m 2  + 11 equal lengths. Notice that these intervals are all o f  length less 
than Associate with each collection {bk: bk E Ik, k = 0 + 1, + 2, . . .,[ml+']}a set 

where E is the same as in the theorem statement. I f  h7, . . . , h z  is the collection of  all such 
sets, then U ~ L '  covers S ,  and 8,s (crn)'"'+'. Finally, we define 0;:= nDm, k = 1, 

( ai;,(t) - dt +0 as .  

/,,,.. . 2, and these clearly cover Dm. 
Fix k ,  and define 

Calculations analogous to those performed in the previous example lead to (i)  +(O)  = 1, (ii) 
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+'(0) 5 - 6, and, with the help of a result in Hwang (1980), (iii) +"(t)5 em2 for t 
E [0, l/(cm)]. From this we conclude that +(m-') s 1- 6/(cm2) for all m sufficiently large. 
For large m then, 

8, ((p,)" 5 (1- S/cm2)",( ~ m ) ~ ~ ' + '  

and the latter is summable when m = m, = O(n1/3-e). 

6. A variation on the kernel estimator. To motivate our last example, let us 
return to the "convolution sieve" defined in Section 1: 

m m
S, = {a: a(x) = -exp{-T (I -y ) ~ }  F(dy),  F a n  arbitrary Irn 

-,J2?r 
Recall our description of the associated maximum likelihood estimator as being closely 
related to the Parzen-Rosenblatt kernel estimator. More specifically: 

PROPOSITIONFor every n and  m, M:, is nonempty, and a EM:, implies1. 

for some yl, . . .,y, andpl,  . . .,p, satisfyingp, 2 0, 15 i s n, 2:=1p,  = 1.Furthermore, if 
min(xl, . . ., x,) < max(xl, . . . , x,) then min(xl, .. . , x,) < min(y1, .. . , y,) and max 
(yl, . . . ,y,) < max(xl, . . . ,x, ). (The proof, by S. Geman and D. E. McClure, is in Geman 
(1981). Since the proposition is not directly related to Theorem 2 or its application, we will 
not reproduce it here.) 

It is interesting to note that the kernel estimator with Gaussian kernel, i.e. 

is in S,, but the last statement in the proposition indicates that /?is not among the 
maximum likelihood solutions, i.e. P M;. 

Although we have characterized the maximum likelihood set up to the 2n parameters 
yl, ....,yn,pl,. . . , pn ,  its actual computation is difficult. The proposition suggests a smaller 
and computationally more attractive sieve, 

i.e., we give equal mass to each kernel, but allow the locations to move in such a way as to 
maximize the likelihood. (Here again, it is easy to show that for a E M;, which is the 
maximum likelihood set, min(xl, . . ., x,) < min( yl, . . ., y,) and max (yr, .,y,) < 
max(x1, . . . ,x,) provided min(xl, . . . ,x,) < max (XI, . . . ,x,); and so, again, the kernel 
e_stimator is not among the maximum likelihood solutions.) We have experimented with 
S,,, and have found, as a rule, that the number of distinct y's in a maximum likelihood 
solution is considerably smaller than n. In other words, the kernels will often coalesce to 
achieve an increased likelihood. Sometimes this results in strikingly accurate density 
estimators, while at  other times this "maximum likelihood" solution is a poor second to 
the corresponding (same window width) kernel estimator. In either case, this estimator 
suffers the very same stability problem as the kernel estimator: the results are critically 
dependent on the choice of the kernel width (which is here governed by the sieve parameter 
m). 

One approach to this critical dependence on window width (a) is to include a as a free 
parameter within the sieve, and thus allow it to be chosp  by maximum likelihood. But we 
must be somewhat careful; we cannot merely replace S, by 
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since then the maximum of the likelihood is achieved with u = 0 and the kernels centered 
at  the sample points. Let us instead define the sieve parameter m to be the number of 
kernels, restricting this to be smaller than n, and consider 

The associated maximum likelihood estimator has performed well in our simulations, but 
it is still true that the extreme possible values of the sieve parameter produce radically 
different estimators: with moderate sample sizes (n z 50), m = 1generally oversmooths 
and m = n - 1will almost always drastically undersmooth. 

As a final example of the application of Theorem 2, we will obtain an asymptotic bound 
on the growth of the sievesm which will guarantee strong consistency in the L1metric ( S ,  
or gmcan be similarly treated). But first let us briefly discuss, in general terms, the 
important issue raised in the previous paragraphs: the dependence of a sieve estimator on 
the precise choice of sieve size. We have developed a general approach to obtaining 
asymptotic bounds on the growth rate of seives so as to ensure consistent estimation. But 
among the important practical questions that remain unanswered (including relative 
efficiency, asymptotic distributions, good sieves for robust estimation, etc.), perhaps most 
pressing is the problem of choosing an appropriate sieve size when given a fixed finite 
collection of observations. In one form or another, this "smoothing" problem faces all 
nonparametric estimators of densities and regressions. For kernel estimators it is the 
problem of choosing the right kernel width. For the maximum penalized likelihood 
estimators, it is the problem of choosing an appropriate weight to be given the penalty 
function. In each case the problem is one of choosing the right degree of smoothing when 
given finite data for a potentially infinite dimensional problem. 

Among the general solutions proposed for the smoothing problem, there are at  least 
two which have proven widely successful and which can be applied directly to the choice 
of sieve size. These are the methods of cross-validation-see Stone (1978) and Wahba 
(1981), and the many references therein-and Akaike's (1977) information criterion. We 
have experimented extensively with the former, and have found what many others have 
found (see, e.g., Scott and Factor, 1981; Utreras, 1979; Wahba and Wold, 1975; Wahba, 
1981): that cross-validation is often a strikingly effective means of choosing an appropriate 
degree of smoothing. But aside from these promising simulation results, we have no real 
mathematical evidence to support the application of these techniques to the method of 
sieves. Indeed, the properties of estimators employing data-driven smoothing are almost 
entirely unknown, whether the application be to sieves or to any other nonparametric 
estimation technique. In our opinion, the identification of these properties stands as an 
unusually challenging and relevant problem for mathematical statistics. 

Let us return to the easier task of guaranteeing consistent estimation. 

THEOREM5. Assume that ao is a bounded density with compact (but possibly 
unknown) support. If m, --+ m in such a way that m, = O(n''5-') for some E > 0, and m, 
5 n - 1for all  n, then 

where A k is the maximum likelihood set associated with sm. 
Most of the proof is a repeat of the calculations performed for the examples in Sections 

4 and 5. But there are two new aspects which are perhaps worth mentioning. The first is 
the relation between the condition C2(a) and the metric for convergence (L1 in the 
theorem); C2(a) does not directly translate into a "natural" metric for this problem, as it 
can be said to have done in the previous examples. Instead, one must first establish a 
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relation between convergence of the Kullback-Leibler information and L1 convergence. In 
this regard, we have the following. 

PROPOSITION2. Let a0 be a density function satis&ingJ> ao(x) In ao(x) dx < m. If, 
for each n, T,is a collection of density functions, and if 

then also 

and hence C2(a) holds. 

The proof is in Geman (1981),and will not be repeated here. 
Direct application of Theorem 2 to the sieve gmis not possible; for each 6> 0, pm= 1 

no matter what the choice of covering sets OT, . , O@ The underlying intuitive reason 
is that a can be made arbitrarily small, and therefore each sieve contains estimators 
arbitrarily ill-behaved. But the maximum likelihood set Wm,consists of relatively smooth 
functions. This allows us to define a smaller and more regular "dummy" sieve which is 
guaranteed to contain Wm,for all n sufficiently large. Theorem 2 is then applied to this 
substitute sieve. (An analogous procedure can be used for the sieves Smand gmas well.) 
Specifically, let k be such that [-k, k] contains the support of ao. Then we first show (and 
this is not difficult) that with probability one, Wm, gm,, for all n sufficiently large, where 

1
a ~ g ~ : l ~ i l s k ~ i ,and -

m In m 

Theorem 2 applies directly to gm(it does not matter that 5 is not known), and when n is 
large, gm,has the same maximum likelihood set (Pm,)as S,, . 
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